On Efficient Pairings on Elliptic Curves over Extension Fields
نویسندگان
چکیده
In implementation of elliptic curve cryptography, three kinds of finite fields have been widely studied, i.e. prime field, binary field and optimal extension field. In pairing-based cryptography, however, pairingfriendly curves are usually chosen among ordinary curves over prime fields and supersingular curves over extension fields with small characteristics. In this paper, we study pairings on elliptic curves over extension fields from the point of view of accelerating the Miller’s algorithm to present further advantage of pairing-friendly curves over extension fields, not relying on the much faster field arithmetic. We propose new pairings on elliptic curves over extension fields can make better use of the multi-pairing technique for the efficient implementation. By using some implementation skills, our new pairings could be implemented much more efficiently than the optimal ate pairing and the optimal twisted ate pairing on elliptic curves over extension fields. At last, we use the similar method to give more efficient pairings on Estibals’s supersingular curves over composite extension fields in parallel implementation.
منابع مشابه
Faster Pairings on Special Weierstrass Curves
This paper presents efficient formulas for computing cryptographic pairings on the curve y = cx + 1 over fields of large characteristic. We provide examples of pairing-friendly elliptic curves of this form which are of interest for efficient pairing implementations.
متن کاملDesigning an ASIP for Cryptographic Pairings over Barreto-Naehrig Curves
This paper presents a design-space exploration of an applicationspecific instruction-set processor (ASIP) for the computation of various cryptographic pairings over Barreto-Naehrig curves (BN curves). Cryptographic pairings are based on elliptic curves over finite fields—in the case of BN curves a field Fp of large prime order p. Efficient arithmetic in these fields is crucial for fast computat...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملSelf-pairings on supersingular elliptic curves with embedding degree three
Self-pairings are a special subclass of pairings and have interesting applications in cryptographic schemes and protocols. In this paper, we explore the computation of the self-pairings on supersingular elliptic curves with embedding degree k = 3. We construct a novel self-pairing which has the same Miller loop as the Eta/Ate pairing. However, the proposed self-pairing has a simple final expone...
متن کاملEfficient Pairing Computation on Genus 2 Curves in Projective Coordinates
In recent years there has been much interest in the development and the fast computation of bilinear pairings due to their practical and myriad applications in cryptography. Well known efficient examples are the Weil and Tate pairings and their variants such as the Eta and Ate pairings on the Jacobians of (hyper-)elliptic curves. In this paper, we consider the use of projective coordinates for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012